Thursday, October 8, 2015

Who Are You Wearing?: Does Competition Affect How Women View Luxury?

What do you think of when I say “luxury consumption”? Probably something that requires a Robin Leach voice over, right? Now what if I ask you why these luxuries are so valued? Is it because they are of excellent quality? Aesthetically appealing? Highly exclusive? Next, consider the audience for the luxury – who is admiring who? And what does that luxury symbolize? Status? Wealth? Success?

A recent paper in Evolutionary Psychology takes a look at these questions and has one of the best titles ever. To date, much of the research on luxury consumption has focused on why men spend so much money on brands that “offer no additional utilitarian benefits compared to their cheaper counterparts.” I found that rather odd as I tend to think of women when I think of luxury shopping. Perhaps because I am one. For example, did you know that an Herm├Ęs Birkin bag can go for over $200,000? Yes, that is an extreme example, but think about how many women you see every day that carry Coach bags, wear designer brand clothes, and/or own at least one pair of Jimmy Choo shoes. Put that way, perhaps it is unsurprising to know that women spend huge sums of money on “conspicuous luxuries,” an average of $100 billion each year. This study looked at the psychology of women in relation to symbolism of these luxuries by breaking it down into two experiments.

Experiment 1 – Does competition trigger women’s luxury consumption and preferences?

A group of 195 women, under the age of 50 and of various incomes and education levels, completed an online survey. A 2 (context) by 2 (luxuries) by 2 (product type) factorial design used to test fictional scenarios.

In the context of competition:

Competitive Scenario: Women were asked to rate four pictures of attractive women. Then they were asked to read a scenario with those pictures in mind. For example:

Imagine that you are at a class reunion and you meet an attractive, smart, funny, intelligent man with an engaging personality. However, the woman in the picture also shows an interest in this man and she has struck up a conversation with him while you were gone to get a drink.

Noncompetitive Scenario: Women were asked to rate four pictures of landscapes for attractiveness. Then they read a scenario such as:

Imagine that you are walking through the most beautiful landscape and you enjoy the environment, weather and views.

The luxuries and types:

Women were asked to read a description of a luxury product that enhances physical attractiveness (like a dress) or a neutral product that does not (like a smartphone). Then the luxuriousness of the product was manipulated by using various adjectives. For example:

“Imagine you see a little black dress in a store. It is a very expensive but beautiful dress. The dress is a unique piece of an exclusive clothing line. It has an excellent quality and is only available in a luxurious clothing store. When wearing this dress you will feel luxurious.”

When asked to read the scenario, they were asked to imagine the items in a fashion store and rate how much they liked the item.

They found that women in the competitive context felt more competitive, and women in the luxury condition found products to be more luxurious. Okay, yeah, I would pretty much expect that. But more specifically, they found interaction: women who perceived the luxury smartphone as more luxurious and expensive in the competitive context. It was context that ended up playing the dominant role in female-female competition, particularly with luxury items that enhance physical attractiveness (like the dress). I definitely believe that one.

Experiment 2 – What do luxury goods signal to rival females?

An online survey was also used for this experiment. A 9 (product) by 2 (product type) between-subjects design was used. First, women read a scenario where a woman leaves for a trip and upon arrival realizes she forgot a product. So she goes on a shopping trip and purchases Product X for Price Y. In the luxury condition a dress or watch would be purchased for 300 Euro (did I mention this was conducted in Belgium?). In the non-luxury condition, an alarm clock or night cream would be purchased for 15 Euro. Next, respondents were asked to assess the woman on various traits (attractive, sexy, loyal, smart, mature, ambitious, wealthy, etc.) and mate value (agreeableness, sexual willingness, ambition, status, etc.). They were also asked if they would consider this woman to be a friend, if she spent a lot of money on that product, and if they would spend similar amounts of money.

The respondents in the luxury condition agreed that the woman spent a lot of money on the product, and that they would spend less money on it. This luxury-loving woman was also perceived to be more attractive, sexier, flirtier, youthful, ambitious, and richer but less loyal, mature, and smart. She was also less likely to be a potential friend. However, there no differences between the mate value perceptions and the degree to which the woman was considered to be a rival. There were also some interaction terms here. For example, the woman was perceived to be more youthful in the luxury condition when she purchased the attractiveness enhancing product.

So what do we take away from all of this? Perhaps we just like the self-promotion. Or maybe we just feel more attractive wearing a luxury dress. Yeah, sure, maybe. But these results really show that we like to look luxurious to up our attractiveness to beat another woman. Frankly, ladies, we sound like judgmental bitches.

ResearchBlogging.orgHudders, L., De Backer, C., Fisher, M., & Vyncke, P. (2014). The Rival Wears Prada: Luxury Consumption as a Female Competition Strategy Evolutionary Psychology, 12 (3) DOI: 10.1177/147470491401200306

Thursday, October 1, 2015

Saturday, September 19, 2015

Arrr...It Be Another International Talk Like a Pirate Day!

Ahoy, Matey! It be another International Talk Like a Pirate Day! If ye've been followin' me blog then ye know me love for ITLAPD. Tis how I know ye've been practicin' yer Arrr's. To celebrate this bonny time o' year ye'll be singin' along with me to some fine tunes.

Ye'll also be visitin' the International Talk Like a Pirate Day port this day or ye'll be walkin' the plank!

Friday, September 4, 2015

Science Style

A Taylor Swift acapella parody that is pretty frickin' great.

Tuesday, September 1, 2015

The Martian - A Brilliant Book and Viral Campaign haven't read The Martian yet? Get on that ASAP. It's really really great.

I first heard about the book via The Weekly Space Hangout's talk with author Andy Weir. Andy is one of those guys that likes to calculate orbital dynamics as a hobby. All the science in the book is accurate, including the physics of space travel and the various orbital paths. He actually wrote software to track constant-thrust trajectories. To say that I appreciate that level of scientific detail and accuracy is an understatement. It really shows in the reading and, I think, makes the book that much more gripping.

In this promo video, Neil deGrasse Tyson focuses on The Martian's Ares 3 mission, giving us information about it Cosmos- and Star Talk-style. Neil reports to you as if he is in a real video talking about an actual mission to Mars. The video is part of a quite impressive viral marketing campaign out of 20th Century Fox, the studio filming the adaptation. The film stars Matt Damon, Jessica Chastain, and Kate Mara (to name a few) and is released on October 2nd. Can't wait!

Oh, and here's the trailer too:

Monday, August 31, 2015

Beautiful Chemistry

It's all in the title. The Beautiful Chemistry project is a collaboration between the Institute of Advanced Technology at the University of Science and Technology of China and Tsinghua University Press. They used a 4K UltraHD camera and special lenses to capture chemical reactions in astonishing detail. At the molecular scale, they used advanced computer graphics and interactive technology to showcase beautiful chemical structures.

Here are a few of my favorities:

Precipitation: The creation of a solid in a solution or inside another solid during a chemical reaction or by diffusion in a solid. These reactions occur when cations and anions in aqueous solution combine to form an insoluble ionic solid.

This video shows 5 precipitation reactions, each with its own “personality”. The first is a "typical" reaction we see a transparent solution in a test tube at the beginning and a cloudy liquid at the end after adding a few droplets of another solution. However, when we used cubic glass cells to replace test tubes and took a much closer look, their unique beauty was revealed.

Metal Displacement: Oxidation/reduction reactions between metals and metal ions

In this video they dropped zinc metal in silver nitrate (AgNO3), copper sulfate (CuSO4), and lead nitrate (Pb(NO3)2) solutions. Then they recorded the emergence of silver, copper, and lead metals. To preserve the fragile structure of lead metal, they also added sodium silicate (Na2SiO3) and acetic acid (CH3COOH) to the solution to make it gelatinize.

Supramolecular Nanotube:

They made this image based on J. Am. Chem. Soc. 130, 9434 (2008), an atomic model provided by Prof. Wusong Jin & Prof. Takuzo Aida.

DNA Nano-spaceship:

This model was based on Science 338, 1177 (2012), an atomic model provided by Prof. Yonggang Ke and Prof. Peng Yin.

See lots more over at Beautiful Chemistry.

Friday, August 28, 2015

Swarming Squid Sperm: A Strategy in Sneakiness

Sneaky swarming squid sperm. Yeah, let’s talk about that. ‘Cause you hear that and you gotta know, right? But before all the sperm and the swarming is the amorous squid. Let’s start there.

As you may expect, squid have both a male and a female. Male squid produce spermatophores, packets of sperm that they can transfer to the females. Female squid carry around these sperm packets until they are ready to spawn. That can be quite some time in some species. When they are ready, they will use the stored sperm to fertilize and then release hundreds or thousands of eggs into the water as jelly-like strands. That’s about what we know about squid reproduction, the rest is relatively mysterious.

A newish study in Current Biology sheds some light on the mysterious nature of squid sperm. The study organism is Loligo bleekeri, one of the more common of the pencil squids (Loliginidae) in Japan and southern Korea. It is moderately large (40 cm) with very short arms. It is a polyandrous species, meaning that males only mate with one female, but females mate with many males. It is a good mating system for researchers interested in mate choice and sperm competition (oh yeah, there’s a whole subdiscipline of the science of sperm competition – rethinking your job now aren’t you?). These have been shown to drive sperm evolution (yes, that’s a thing) and morphology to optimize fertilization success. Because in this game, it’s all about how many babies you have.

One of the things that makes this squid species particularly interesting is the dimorphism among males. Large “consort” males do all the work. They compete with other males, court females with colorful body displays, and guard the female until she spawns his offspring. Smaller “sneaker” males are just that: sneaky. They rush in under the nose (or beak, as it were) of the consort male, attach their spermatophore and book it on outta there. The dimorphism in males is reflected in their mating as well as their size. Consort males place their spermatophores inside the female’s oviduct, while the sneaker males just stick it onto the external body surface near to the seminal receptacle near the mouth. It isn’t as close to the eggs, but it must be a successful otherwise why do it? What is it that makes this stick-and-ditch strategy so successful?

To find out, the researchers dissected consort and sneaker males to recover their spermatophores. Then sperm were released into test tubes, diluted and tagged with fluorescent labels (each type with a different label). They observed that when the sperm suspension was drawn into a capillary tube the sneaker, but not the consort, sperm aggregated (or “swarmed”) to form a regularly striped pattern along the tube. And, when sneaker and consort sperm were mixed, still only the sneaker sperm swarmed. The sperm weren’t slowing down or sticking together, so what was causing the swarming? It’s not like the sperm are problem solving. So the next thought was: Maybe it’s a chemical response. So a filter assay was designed where two chambers were separated by a filter so fine that only small molecules could get though. A sperm suspension was put into the lower chamber and then each type of sperm added to the top to see where it swam. Again, only sneaker sperm migrated toward the filter. Okay, so it must be some kind of chemical attractant, but what and how?

Again, labeled sperm suspensions were put into capillary tubes. Then bubbles of different gases were microinjected into the solution. This assay revealed that carbon dioxide (CO2) attracted sneaker, but not consort, sperm. This CO2 is likely generated by the sperm via the carbonate system. Not exactly a super-simple system. To tease apart the mechanism, they developed caged carbonate (you’re thinking Han Solo…me too, but not quite the same) to sculpture gradients of bicarbonate (a basic solution, pH-wise). This system allowed them to determine that swarming depends on acidic (CO2 and/or H+) gradients but not on a biocarbonate gradient. Next, they found that carbonic anhydrases (CAs) are involved in swarming as CO2 sensors in cells.

But let’s go back to the acid thing (as both CO2 and H+ increase acidity). The researchers used a pH-sensitive dye to look at the acid gradient during swarming. They observed that the middle of the swarm acidified first, producing a H+ gradient outwards. When they added a buffer, the swarming disappeared. When they put a pipette of acid (H+) into the suspension, both sneaker and consort sperm moved toward it. But remember that only CO2 attracted the sneaker sperm. Additionally, the pH at which these types of sperm responded was different. They found that only sneaker sperm lowered their intracellular pH with environmental pH. This means that only sneaker sperm have a H+ transport system that allows for the CO2 attraction. And finally, they showed that calcium (Ca2+) influx controls cause the sperm to turn around when they reach the end (weak part) of the gradient.

Whew! That’s a lot of compact information! So let’s put it together in a whole-organism, what-the-heck-is-going-on kind of way. Why does it matter that sneaker sperm like CO2? Remember back to the placement of the spermatophores by each of the males. When the female releases her eggs, the consort male’s sperm has first access because it is in the oviduct. They fertilize a lot of eggs but not all. Then the female holds her eggs in her arms while she swims to a good substrate to release them. Squid arms and mouth are not all that far away from each other. This is when the sneaker male sperm goes to work. The swarming allows the sperm to stay close to the site of egg deposition and may be sensing CO2 released from the eggs; both increase the chances of fertilization. And, in the end, that’s what it’s all about.

ResearchBlogging.orgHirohashi, N., Alvarez, L., Shiba, K., Fujiwara, E., Iwata, Y., Mohri, T., Inaba, K., Chiba, K., Ochi, H., Supuran, C., Kotzur, N., Kakiuchi, Y., Kaupp, U., & Baba, S. (2013). Sperm from Sneaker Male Squids Exhibit Chemotactic Swarming to CO2 Current Biology, 23 (9), 775-781 DOI: 10.1016/j.cub.2013.03.040

And for a little more info, here's an earlier study on the same topic:

ResearchBlogging.orgIwata, Y., Shaw, P., Fujiwara, E., Shiba, K., Kakiuchi, Y., & Hirohashi, N. (2011). Why small males have big sperm: dimorphic squid sperm linked to alternative mating behaviours BMC Evolutionary Biology, 11 (1) DOI: 10.1186/1471-2148-11-236

(image via -- Note that this species is Loligo vulgaris, the European squid. It is weirdly difficult to find images of L. bleekeri, but this image gives you some of the characteristics of the genus.)
Related Posts with Thumbnails